CARBON-13 ESR COUPLING CONSTANTS

OF PERSISTENT AND STABILIZED ALLYL RADICALS

W. Ahrens, K. Schrelner, H. Regenstein and A. Berndt * Fachbereich Chemie der Universitat, 255 Marburg, Lahnberge (Received in UK 16 October 1975; accepted for publication 3 November 1975)

In a recent paper Ingold et al. $1)$ pointed out that allyl radicals in gaining persistence by steric hindrance lose their stabilization by resonance. In the course of our work on sterically hindered allyl $2)$ and aza-allyl $3)$ radicals we have prepared a series of "stabilized" 1) allyl radicals, two of which are "persistent" 1) even at room temperature 4). This persistence enabled us to measure ¹³C-ESR coupling constants of delocalized allyl radicals for the first time

1,1,3-tri-tert-butylallyl *la* and 1,3-di-tert-butyl-l-isopropylallyl radical $2a$ and their deuterated analogs $1b$ and $2b$ were generated by reductive cleavage with K/Na alloy of the 3,5-di-tert-butyl-benzoate and oxalic diester $6)$ of the corresponding ally1 alcohols at room temperature. The less persistent radicals 1,2,3-tri-tert-butylallyl $\underline{3}$, 1,3-di-tert-butyl-(2-pentadeuterophenyl)-allyl $\underline{4}$ and 1,3-di-tert-butylallyl 5 were produced from the corresponding allyl bromides by abstraction of bromine atoms with photochemically generated trimethylstannyl radicals. The ESR-data of the new radicals are shown in the table. The persistence of 1 and 2 must be caused by steric screening of the high spin density at C_3 by the endo tert-butyl and isopropyl groups at C_1 . Comparison of the \mathtt{a}^H values of <u>1</u> and <u>2</u> with those of the planar radical <u>5</u> shows that 1 is slightly twisted at the $C_1 - C_2$ bond while 2 is nearly planar. From the almost identical a_{C}^{H} $\ddot{\textbf{c}}_3$ values of $\underline{4}$ and $\underline{5}$ a planar conformation can be deduced for 4 . Taking into account the known effect of alkyl substituents to increase a^C to about 2 % (CH₃: $a^C = 38,34$ G; CH₂-CH₃: $a^C = 39,07$ G)⁷ one can predict the a^C values of the unsubstituted allyl radical to be a_1^C $1,3 = 22,3$ and $a_2 =$ 16,9 G. These data are in part considerably different from the results of INDO

4511

ESR coupling constants a)

a) in Gauss = 10^{-4} T; b) in ^oC; <u>la,b</u>, 2a in benzene, 2b, 3, 4, 5 in cyclopentane; c) methin proton; d) at -40°

calculations $(c_{1,3}: 28.0; c_2: -16.6)$ $8)$ and semiempirical calculations using the Karplus Fraenkel relationship $(c_{1.3}: 25.8: c_2: -23.0)$ $9)$. A detailed discussion including the conformations of radicals 1-4 will be given in a full paper.

Acknowledgement: We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. W.A. wishes to thank the Studienstiftung des Deutschen Volkes for a scholarship.

References

-
- 2a) H. Regenstein and A. Berndt, <u>Angew.Chem., Int.Ed</u>. 13, 145 (1974)
b) H. Regenstein, W. Ahrens and A. Berndt, <u>Tetrahedron 31</u>, (1975), in press
- 3) W. Ahrens and A. Berndt, Tetrahedron Lett. 3141 (1973); 2295 (1975)
- the long known persistent allyl radicals of the tetraphenylallyl type 5) 4) owe their persistence to delocalization into the aromatic rings too
- K. Watanabe, J. Jamauchi, H. Ohya-Nishiguchi, Y. Deguchi and H. Takaki, $5)$ Bull. Chem. Soc. Jap. 45, 371 (1972) and literature cited therein
- K. Schreiner and A. Berndt, Angew.Chem., Int.Ed. 13, 144 (1974) 6)
- R.W. Fessenden, J.Phys.Chem. 71, 74 (1967) 7)
- J.A. Pople, D.L. Beveridge and P.A. Dobosh, J.Amer.Chem.Soc. 90, 4201 8) (1968)
- 9) G.N. LaMar, "NMR of paramagnetic molecules", Ed. by G.N. LaMar, Academic Press, New York 1973, p. 103